薄膜構造物の大変形と流体構造連成問題

研究背景・目的

液晶や薄型太陽光パネル等の品質向上・製造技術の改善

【課題1】薄いフィルムの搬送時の 変形(しわなど)予測

【課題2】塗装・乾燥時の流体の 吹付けの影響(振動防止)

研究内容

高機能フィルムの製造工程の解析モデル

- ・極めて柔軟な構造物(薄膜)の大変形解析と計算効率の改善
- ・周囲流体の流れによる振動の発生予測

研究成果

1. 弾性はりや薄膜の大変形モデルの構築と計算性の改善

				1 1		' '												
0.4	-	0	Pro	pos	ed	fo	rm	ula	tio	n								
ľ	-	•	Pre	vioi	us	for	mu	llat	tio	n [H	Berz	zeri	i, e	t al	., ((20)	01	.)

0.8

2. 周囲の流れにより発生する振動の予測(新しい解析法を構築)

周囲流体の流れを受ける両端固定はりの振動(2次元,左:座屈型,右:振動型)

今後の展開

・接触領域(ローラ搬送)を通過する柔軟構造物の運動解析